top of page
Search

Mastering Machine Learning Algorithms : Download Free Book

  • riatijolseti
  • Aug 20, 2023
  • 6 min read


This book is an ideal and relevant source of content for data science professionals who want to delve into complex machine learning algorithms, calibrate models, and improve the predictions of the trained model. A basic knowledge of machine learning is preferred to get the best out of this guide.


Machine learning is a subset of AI that aims to make modern-day computer systems smarter and more intelligent. The real power of machine learning resides in its algorithms, which make even the most difficult things capable of being handled by machines. However, with the advancement in the technology and requirements of data, machines will have to be smarter than they are today to meet the overwhelming data needs; mastering these algorithms and using them optimally is the need of the hour.




Mastering Machine Learning Algorithms : Download Free Book



Mastering Machine Learning Algorithms is your complete guide to quickly getting to grips with popular machine learning algorithms. You will be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and will learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this book will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries such as scikit-learn. You will also learn how to use Keras and TensorFlow to train effective neural networks.


Mastering Machine Learning Algorithms, Second Edition helps you harness the real power of machine learning algorithms in order to implement smarter ways of meeting today's overwhelming data needs. This newly updated and revised guide will help you master algorithms used widely in semi-supervised learning, reinforcement learning, supervised learning, and unsupervised learning domains.


All the resources above can be obtained for free. While edX courses come with a cost, you can apply for financial aid to be exempted from the course fee. You can also download the e-book mentioned above for free.


Mastering Machine Learning Algorithms, 2nd Edition helps you harness the real power of machine learning algorithms in order to implement smarter ways of meeting today's overwhelming data needs. This newly updated and revised guide will help you master algorithms used widely in semi-supervised learning, reinforcement learning, supervi...


Bridge the gap between a high-level understanding of how an algorithm works and knowing the nuts and bolts to tune your models better. This book will give you the confidence and skills when developing all the major machine learning models. In Pro Machine Learning Algorithms, you will first develop the algorithm in Excel so that you get a ...


Know how to adapt quantum computing and machine learning algorithms. This book takes you on a journey into hands-on quantum machine learning (QML) through various options available in industry and research.The first three chapters offer insights into the combination of the science of quantum mechanics and the techniques of machine learnin...


This book examines machine learning models including logistic regression, decision trees, and support vector machines, and applies them to common problems such as categorizing documents and classifying images. It begins with the fundamentals of machine learning, introducing you to the supervised-unsupervised spectrum, the uses of training...


Go is the perfect language for machine learning; it helps to clearly describe complex algorithms, and also helps developers to understand how to run efficient optimized code. This book will teach you how to implement machine learning in Go to make programs that are easy to deploy and code that is not only easy to understand and debug, but...


Machine learning is the subject of a large and sophisticated professional literature, with excellent books for biomedical engineers [1, 2] as well as at least one excellent text available free online [3]. Machine learning, together with related topics such as data mining, provides a set of tools with a huge potential range of applications from improving medical diagnosis to optimization of cancer therapy. It has also been the subject of considerable hype in the popular literature.


Master Machine Learning Algorithms can be purchased online at -machine-learning-algorithms/ (accessed on 03.08.2017) at modest cost ($USD 37), which also includes 17 Excel spreadsheets to illustrate the main algorithms. His website offers 10 related books (including four at a more advanced level) that are tailored for use with the statistical program such as R or the data mining program Weka (both freely distributed on the internet). So, for very little money, a reader can have a useful basic introduction to the topic together with ready-made software to play around with. Brownlee frequently sends emails to a wide distribution list with interesting tutorial material about topics in machine learning.


In the 162 pages of the version presently being reviewed, Brownlee describes 11 basic machine learning algorithms and implements them in Excel spreadsheets, in a rudimentary but informative way. For each algorithm, the author describes the underlying mathematics, and for most of them he provides a tutorial with links to an Excel spreadsheet and graphs and tables with results. The book is divided roughly into three parts: linear algorithms (pages from 25 to 71), nonlinear algorithms (pages from 72 to 125), and ensemble algorithms (pages from 126 to 149). The algorithms discussed include linear regression, logistic regression, discriminant analysis, classification and regression trees, Naive Bayes, k-nearest neighbours, support vector machines, decision trees. Introductory and concluding chapters discuss general aspects of machine learning, including problems of overfitting.


Overall, the contribution of machine learning or data mining to medical diagnosis to date has been mixed. In their recent systematic review of the development of risk prediction models from electronic health records data, Goldstein et al. [12] noted the potential usefulness of such studies, but also considered areas in which improvement is needed. These include the need for studies to validate their results across different healthcare centers, develop better methods to deal with missing data, and assessing how the algorithms impact clinical decision making.


For this Appendix, the data set was randomly divided into a learning set comprising 2/3 of the complete data (204 cases) and a test set with the remaining 102 cases. Classifiers were trained and validated using three algorithms in the Matlab Statistical Toolbox (support vector machine (SVM), pruned decision trees and naive Bayes classifier). For each algorithm, this process was repeated 1000 times using randomly chosen training and test sets from the dataset. There was no attempt to address problems arising from the significant imbalance in the data set (66% of the patients were still alive 5 years after surgery).


Classification is used when your target is categorical, while regression is used when your target variable is continuous. Both classification and regression belong to the category of supervised machine learning algorithms.


Datasets serve as the railways upon which machine learning algorithms ride. Without them, any machine-learning algorithm will fail to progress in the domains of text classification, product categorization, and text mining.


This book will teach you advanced techniques in machine learning with the latest code in R. You will delve into statistical learning theory and supervised learning; design efficient algorithms; learn about creating Recommendation Engines; use multi-class classification and deep learning; and more.


With a wide range of comprehensive advice including machine learning models, neural networks, statistics, and much more, this guide is a highly effective tool for mastering this incredible technology.


The idea behind creating this guide is to simplify the journey of aspiring data scientists and machine learning enthusiasts across the world. Through this guide, I will enable you to work on machine learning problems and gain from experience. I am providing a high-level understanding of various machine learning algorithms along with R & Python codes to run them. These should be sufficient to get your hands dirty. You can also check out our Machine Learning Course. Essentials of machine learning algorithms with implementation in R and Python


The framework is a fast and high-performance gradient boosting one based on decision tree algorithms, used for ranking, classification and many other machine learning tasks. It was developed under the Distributed Machine Learning Toolkit Project of Microsoft.


By now, I am sure, you would have an idea of commonly used machine learning algorithms. My sole intention behind writing this article and providing the codes in R and Python is to get you started right away. If you are keen to master machine learning algorithms, start right away. Take up problems, develop a physical understanding of the process, apply these codes and see the fun!


Bradford does independent consulting for machine learning projects related to manufacturing, law, pharmaceutical operations, and other fields. He also writes technical books about programming, algorithms, and data science.


That's exactly why our mathematicians and engineers have spent years redeveloping, starting from algebra, the whole set of machine learning and signal processing algorithms to run natively in any Arm Cortex-M microcontroller. This allows the internal search engine of NanoEdge AI Studio to deliver, "out of the box", the best algorithmic combination to your developers in the form of a library fully optimized in Ram and Flash size and ready to be integrated in the main code. What can take months to develop is now available in minutes. 2ff7e9595c


 
 
 

Recent Posts

See All

Commentaires


© 2023 by Adam Grey. Proudly created with Wix.com

bottom of page